Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards
نویسندگان
چکیده
When considering hyperbolicity in multi-dimensional Hamiltonian sytems, especially in higher dimensional billiards, the literature usually distinguishes between dispersing and defocusing mechanisms. In this paper we give a unified treatment of these two phenomena, which also covers the important case when the two mechanisms mix. Two theorems on the hyperbolicity (i.e. non-vanishing of the Lyapunov exponents) are proven that are hoped to be applicable to a variety of situations. As an application we investigate soft billiards, that is, replace the hard core collision in dispersing billiards with disjoint spherical scatterers by motion in some spherically symmetric potential. Analogous systems in two dimensions have been widely investigated in the literature, however, we are not aware of any mathematical result in this multi-dimensional case. Hyperbolicity is proven under suitable conditions on the potential. This way we give a natural generalization of the hyperbolicity results obtained before in two dimensions for a large class of potentials.
منابع مشابه
Approximating multi-dimensional Hamiltonian flows by billiards
The behavior of a point particle traveling with a constant speed in a region D ∈ RN , undergoing elastic collisions at the regions’s boundary, is known as the billiard problem. Various billiard models serve as approximation to the classical and semi-classical motion in systems with steep potentials (e.g. for studying classical molecular dynamics, cold atom’s motion in dark optical traps and mic...
متن کاملBilliards: a singular perturbation limit of smooth Hamiltonian flows.
Nonlinear multi-dimensional Hamiltonian systems that are not near integrable typically have mixed phase space and a plethora of instabilities. Hence, it is difficult to analyze them, to visualize them, or even to interpret their numerical simulations. We survey an emerging methodology for analyzing a class of such systems: Hamiltonians with steep potentials that limit to billiards.
متن کاملNonergodicity of the motion in three-dimensional steep repelling dispersing potentials.
It is demonstrated numerically that smooth three degrees of freedom Hamiltonian systems that are arbitrarily close to three-dimensional strictly dispersing billiards (Sinai billiards) have islands of effective stability, and hence are nonergodic. The mechanism for creating the islands is corners of the billiards domain.
متن کاملTrack Billiards
We study a class of planar billiards having the remarkable property that their phase space consists up to a set of zero measure of two invariant sets formed by orbits moving in opposite directions. The tables of these billiards are tubular neighborhoods of differentiable Jordan curves that are unions of finitely many segments and arcs of circles. We prove that under proper conditions on the seg...
متن کاملComparison between covariant and orthogonal Lyapunov vectors.
Two sets of vectors, covariant Lyapunov vectors (CLVs) and orthogonal Lyapunov vectors (OLVs), are currently used to characterize the linear stability of chaotic systems. A comparison is made to show their similarity and difference, especially with respect to the influence on hydrodynamic Lyapunov modes (HLMs). Our numerical simulations show that in both Hamiltonian and dissipative systems HLMs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006